Analyze results of a parameter scan
Arguments
- parameter_scan_results
String or List. If a string, it is interpreted as the name of a
rds
file that contains the results of a parameter scan which is then loaded usingreadRDS()
. Otherwise, it should be the output ofrun_parameter_scan()
directly.- datafile
Name or path to a file containing measured data. The model results in parameter_scan_results are compared to the data therein. If empty, the site is inferred from the ModvegeSite objects in parameter_scan_results and a corresponding data file is searched for in `getOption("growR.data_dir", default = "data").
- smooth_interval
Int. Number of days over which the variable
dBM
is smoothened. Should be set to make experimental data and simulated data to be as comparable as possible.
Value
analyzed A list with five keys: dBM
, cBM
, cBM_end
, metrics
and params
.
- dBM
A data.frame with
1 + n_params + n_metrics
columns where each row represents a different parameter combination. The first column (n
) gives the row number and is used to identify a parameter combination. The subsequentn_params
columns give the values of the parameters used in this combination. The finaln_metrics
columns give the resulting performance score of the model run with these parameters for each metric applied to model variabledBM
.- cBM
A data.frame of same format as for the key dBM. The first
n_params + 1
columns are identical to the data.frame in dBM. The difference is that the finaln_metrics
columns give performance scores with respect to the model variablecBM
.- cBM_end
A data.frame analogous to dBM and cBM, only this time the last
n_metrics
columns give performance scores with respect to the variablecBM_end
, which is the final value ofcBM
, i.e. the cumulative grown biomass at the end of the year.- params
A vector containing the names of the scanned parameters. These are also the column names of columns
2:(n_params+1)
in results.- metrics
A vector containing the names of the employed performance metrics. These are also the column names of the last
n_metrics
columns in results.
Examples
# There needs to be data available with which the model is to be compared.
# For this example, use data provided by the package.
path = system.file("extdata", package = "growR")
datafile = file.path(path, "posieux1.csv")
# We also use example parameter scan data provided by the package.
# In the real world, you would generally create your own data using
# `run_parameter_scan()`.
analyze_parameter_scan(parameter_scan_example, datafile = datafile)
#> $metrics
#> [1] "bias" "MAE" "RMSE"
#>
#> $params
#> [1] "w_FGA" "w_FGB" "w_FGC" "w_FGD" "NI"
#>
#> $dBM
#> n w_FGA w_FGB w_FGC w_FGD NI bias MAE RMSE
#> 1 1 0.25 0.50 0.25 0 0.75 -0.16419980 0.4121337 0.5509299
#> 2 2 0.25 0.50 0.25 0 1.00 0.37751388 0.5616504 0.7263866
#> 3 3 0.25 0.75 0.00 0 0.75 0.01932302 0.4459105 0.6276639
#> 4 4 0.25 0.75 0.00 0 1.00 0.66012890 0.7781165 1.0460631
#> 5 5 0.50 0.25 0.25 0 0.75 -0.11642138 0.3867247 0.5155541
#> 6 6 0.50 0.25 0.25 0 1.00 0.45122258 0.5778548 0.7362369
#> 7 7 0.50 0.50 0.00 0 0.75 0.07664023 0.4441456 0.6178312
#> 8 8 0.50 0.50 0.00 0 1.00 0.75151179 0.8490970 1.0913082
#> 9 9 0.75 0.25 0.00 0 0.75 0.12918741 0.4492931 0.6126609
#> 10 10 0.75 0.25 0.00 0 1.00 0.83592409 0.9173581 1.1348994
#>
#> $cBM
#> n w_FGA w_FGB w_FGC w_FGD NI bias MAE RMSE
#> 1 1 0.25 0.50 0.25 0 0.75 -0.13008035 0.13186180 0.15652216
#> 2 2 0.25 0.50 0.25 0 1.00 0.38746620 0.38746620 0.42660768
#> 3 3 0.25 0.75 0.00 0 0.75 0.03281790 0.06620229 0.07540092
#> 4 4 0.25 0.75 0.00 0 1.00 0.64515615 0.64515615 0.72225753
#> 5 5 0.50 0.25 0.25 0 0.75 -0.08854830 0.09152647 0.11209344
#> 6 6 0.50 0.25 0.25 0 1.00 0.44361801 0.44361801 0.48903023
#> 7 7 0.50 0.50 0.00 0 0.75 0.08346587 0.10527472 0.11363656
#> 8 8 0.50 0.50 0.00 0 1.00 0.72353157 0.72353157 0.80873053
#> 9 9 0.75 0.25 0.00 0 0.75 0.12863606 0.14195089 0.15724209
#> 10 10 0.75 0.25 0.00 0 1.00 0.79117326 0.79117326 0.88505112
#>
#> $cBM_end
#> n w_FGA w_FGB w_FGC w_FGD NI bias MAE RMSE
#> 1 1 0.25 0.50 0.25 0 0.75 -0.9204985 0.9204985 0.9204985
#> 2 2 0.25 0.50 0.25 0 1.00 -0.8683340 0.8683340 0.8683340
#> 3 3 0.25 0.75 0.00 0 0.75 -0.9029277 0.9029277 0.9029277
#> 4 4 0.25 0.75 0.00 0 1.00 -0.8416330 0.8416330 0.8416330
#> 5 5 0.50 0.25 0.25 0 0.75 -0.9157582 0.9157582 0.9157582
#> 6 6 0.50 0.25 0.25 0 1.00 -0.8610272 0.8610272 0.8610272
#> 7 7 0.50 0.50 0.00 0 0.75 -0.8972664 0.8972664 0.8972664
#> 8 8 0.50 0.50 0.00 0 1.00 -0.8325599 0.8325599 0.8325599
#> 9 9 0.75 0.25 0.00 0 0.75 -0.8920878 0.8920878 0.8920878
#> 10 10 0.75 0.25 0.00 0 1.00 -0.8242270 0.8242270 0.8242270
#>